
LA-UR-02-6899

Theory Component
of the

Quantum Information Processing
and

Quantum Computing Roadmap

A Quantum Information Science and
Technology Roadmap

Part 1: Quantum Computation

Section 6.8

Disclaimer:
The opinions expressed in this document are those of the
Technology Experts’ Panel members and are subject to
change. They should not to be taken to indicate in any
way an official position of the U.S. Government sponsors
of this research.

            

Version 1.0
December 1, 2002

This document is available electronically at: http://qist.lanl.gov



Produced for the Advanced Research and Development Activity (ARDA)

Compiled by: Gary Doolen and Brigitta Whaley

Editing and compositing: Todd Heinrichs

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof.

The United States Government strongly supports academic freedom and a researcher’s right to publish; as an
institution, however, the U.S. Government does not endorse the viewpoint of a publication or guarantee its technical
correctness. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. The United States Government requests that the publisher identify this article as work
performed under the auspices of the Advanced Research and Development Activity (ARDA).



Version 1.0 iii December 1, 2002

Table of Contents

1.0 Introduction ...........................................................................................................1

2.0 Quantum Theory Historical Review: A short summary of significant break-
throughs in Quantum Information Theory ..........................................................1

3.0 References .............................................................................................................4

List of Acronyms and Abbreviations

1-D one-dimensional MRFM magnetic resonance force microscopy

2-D two dimensional NMR nuclear magnetic resonance

BEC Bose-Einstein condensate NP nondeterministic polynomial (time)

BQNP bounded quantum analogue of NP P polynomial (time)

BQP bounded quantum polynomial PSPACE problem solvable with polynomial
memory

C-NOT controlled-NOT (gate) QC quantum computation/computing

DFS decoherence-free subspace QCPR Quantum Computing Program
Review

FQHE fractional quantum Hall effect QIP quantum information processing

GHZ Greenberger-Horne-Zeilinger QSAT quantum analog of satisfiable problem

IP interaction proof SQUID superconducting quantum
interference device

MA Merlin-Arthur (problems) TEP Technology Experts Panel





Theory Component of the Quantum Computing Roadmap

Version 1.0 1 December 1, 2002

1.0 Introduction

Note: This document constitutes the most recent draft of the Theoretical Approaches detailed
summary in the process of developing a roadmap for achieving quantum computation
(QC). Please submit any comments or suggestions on this detailed summary to Todd
Heinrichs (tdh@lanl.gov) who will forward them to the relevant Technology Experts
Panel (TEP) member. With your input we can improve this roadmap as a guidance tool
for the continued development of QC research.

In this section of the roadmap we focus on historical aspects of quantum information theory, its
role leading up to the current stage of development of QC, and examples of unanticipated
advances and significant theoretical advances. The panel will revisit the theory component of
the roadmap in a future version. For example, sections summarizing outstanding problems and
new directions will be added.

2.0 Quantum Theory Historical Review: A short summary of significant
breakthroughs in Quantum Information Theory

Information theory is rooted in physics, which places limitations on how information may be
processed and manipulated for computation and for communication. Before the 1980s this
meant classical physics, but since that time there has been a conscious paradigm shift to the
examination of benefits that may derive from basing a theory of information upon the laws of
quantum physics. At least two important precursors to this paradigm shift had critical
influence. The first was the demonstration of nonlocal correlations between different parts of a
quantum system, correlations that possess no classical counterpart, by Bell in the early 1960s![1].
The second important precursor to the new field of “Quantum Information Theory” was
provided by the work of Landauer and Bennett on the thermodynamic cost of
computation![2,3]. Bennett’s 1973 proof that reversible classical computation is possible![3] was
the key idea in Benioff’s positive response in 1980 to negative prognoses of fundamental
limitations of computation provided by physics![4].

In a key paradigm shift, Feynman pointed out in 1992 that simulating quantum physics on a
classical computer appeared to incur an exponential slowdown![5], thus paving the way for
quantum computation. Deutch took a major step further in 1985, with the introduction of
quantum circuits and universal gate sets, providing the critical leap from the restrictions of
Boolean logic underlying classical computation to nonBoolean unitary operations![6]. With this
critical step, the concept of quantum computation was formalized. In 1993, Bernstein and
Vazirani![7] built upon an algorithm of Deutsch and Jozsa![8], to show that quantum computers
provide a superpolynomial advantage over probabilistic computers, thus showing that
quantum computers violate the modified Church-Turing thesis. These algorithms as well as
Simon’s 1994 algorithm![9] benefited from the features of quantum superposition and
entanglement, with the roots of the latter clearly identifiable with the nonclassical correlations
observed by Bell in the early 1960s. This slow growth in exploration of algorithmical advantages
derived from quantum circuits for computation virtually exploded in 1994 with the discovery
by Shor of the polynomial time quantum algorithms for integer factorization and discrete
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logarithm problems![10], followed by the discovery of the quadratic speed-up quantum search
algorithm by Grover in 1996![11]. Both of these theoretical results galvanized the experimental
community into active consideration of possible implementations of quantum logic.
Experimental interest was further stimulated by another significant result of Calderbank, Shor,
and Steane namely that error correction codes could be constructed to protect quantum states
just as for classical states![12]. This demonstration of quantum error correction in 1995 was
subsequently incorporated into a scheme by Kitaev [13], Shor![14], Aharonov and Ben-Or![15],
Knill, LaFlamme, and Zurek![16], and Gottesman and Preskill![17,18] to provide error
thresholds on individual operations that show when computation can continue successfully in
the presence of decoherence and errors (‘fault tolerant’ computation). This result put the
implementation of quantum computation on a similar footing with classical computation using
unreliable gates, and significantly altered the consciousness of the physics community with
regard to experimental implementation.

Quantum complexity theory systematically studies the class of problems that can be solved
efficiently using quantum resources such as entanglement. Bernstein and Vazirani,s 1993 work
showed that relative to an oracle the complexity class BQP, of problems that can be solved in
polynomial time on a quantum computer, is not contained in MA, the probabilistic
generalization of NP![7]. Thus even in the unlikely event that P!=!NP, quantum computers
could still provide a speed-up over classical computers. The limits of quantum computers were
explored by Bennett, Bernstein, Brassard, and Vazirani![19], who showed that quantum
computation cannot speed up search by more than a quadratic factor. This showed that
Grover’s algorithm is optimal and that, relative to a random oracle, quantum computers cannot
solve NP-complete problems. They also showed a similar lower bound for inverting a random
permutation by a quantum computer, thus opening up the possibility of quantum one-way
functions. Recently, Aaronson showed a similar lower bound for the collision problem![20], thus
showing that there is no generic quantum attack against collision intractable hash functions.
Kitaev has studied the class BQNP, the quantum analogue of NP, and showed that QSAT, the
quantum analogue of the satisfiability problem is complete for this class—thus proving that
BQNPÕ PSPACE![13]. Watrous considered the power of quantum communication in the context
of interactive proofs, and showed that the class IP of problems which have interactive proofs
with polynomially many rounds of communication can be simulated with only three rounds of
quantum communication![21]. In the first demonstration of the power of quantum
communication, Burhman, Cleve, and Wigderson showed how two parties could decide set
disjointness by communicating only square root of n quantum bits, quadratically fewer than the
number required classically![22]. Ambainis, Schulman, Vazirani, and Wigderson showed that
for the problem of sampling disjoint subsets, quantum communication yields an exponential
advantage over any protocol that communicates only classical bits![23].

Similar paradigm-changing advances have occurred in the theory of data transmission and
communication as a result of theoretical breakthroughs in quantum information theory. In fact
the oldest branch of quantum information theory concerns the use of quantum channels to
transmit classical information, with work of Holevo dating from 1973![24]. Since then, many
significant results for the use of quantum channels to transmit both classical and quantum
information have been established. It is useful to realize that these, in many cases very practical,
results are derived notwithstanding the two famous results concerning inaccessibility of
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quantum states, namely the impossibility of distinguishing distinct quantum states
(Holevo)![24] and of copying (or ‘cloning’) an unknown quantum state (Wooters & Zurek)![25].
Notable amongst these quantum-information theoretic results with implications for practical
use in quantum communication are quantum data compression, quantum superdense coding,
and teleportation. Together with quantum error correction, quantum data compression
provides a quantum analog for the two most important techniques of classical information
theory. The developments of quantum superdense coding in 1992 (Bennett & Wiesner)![26] and
quantum transmission by teleportation (Bennett & coworkers)![27] in 1993, have no classical
analogue and are thus very surprising when viewed from a classical paradigm. Teleportation
allows states to be transmitted faithfully from one spatial location to the other, while
superdense coding allows the classical information to be transmitted with a smaller number of
resources (quantum bits) via a quantum channel. A related property of quantum channels is
superadditivity, namely that the amount of classical information transmitted may be increased
by use of parallel channels![28,29]. Similar to the development of theoretical techniques to deal
with noise in quantum computation mentioned above, a significant theoretical effort has also
focused on the issues arising from communication with noisy channels. Several results have
emerged here, but a number of open questions still remain and this is a very active area of
theoretical work. Important results arrived at in recent years include a bound on the capacity of
a noisy quantum channel for transmission of classical information (Holevo-Schumacher-
Westmoreland theorem![30–32]), and the development of protocols for distillation (or
‘purification’) of entanglement![33–35].

A related area in which quantum information theory has made remarkable advances in the last
20 years is quantum cryptography. This field provides one of the most successful practical
applications of quantum information to date, with the procedures for secure quantum key
distribution (QKD). First developed by Bennett and Brassard in 1984![36], several protocols now
exist to make a provably secure quantum key for distribution over a public channel. These
schemes rely on the uncertainty of distinguishing quantum states, with the security of the key
also guaranteed as a result of the ability to detect any eavesdropping measurement by an
observed increase in error rate of communication between the two parties. The remarkable
security properties of QKD are a direct result of the properties of quantum information, and
hence of the underlying principles of quantum physics.

These advances have demonstrated the usefulness, in many cases unexpected, of treating
quantum states as information. They have also validated the field of quantum information
theory, providing a critical stimulus to experimental investigation and in some cases literally
opening the path to realization of quantum processing of information for communication or
computation. In fact, several of the most nonclassical or counterintuitive of the theoretical
predictions have been the first to receive experimental verification (e.g., teleportation,
superdense coding, and QKD). Looking back on these developments over the last 20 years, it is
reasonable to expect that further investigation into the fundamentals of quantum information
will continue to provide new and useful insights into issues with very practical implications.
We can identify several outstanding open questions in quantum information theory today,
whose solution would impact the field as a whole. These include complete analysis of channel
capacities for quantum information transmitted via quantum channels and quantification of
entanglement measures for many-particle systems. Another, relatively new direction in
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quantum information theory focuses on the use of measurements as an enabling tool for
quantum information processing, rather than merely as a final step or source of decoherence.
Measurement provides our limited access to the exponential resources intrinsic to quantum
states, and recent work has shown that this access can itself be manipulated to control the
processing, including some schemes to perform entire computations using only measurements
in massively entangled states.

The exploration of new quantum algorithms has achieved some success over the last couple of
years, following a lull of about six years after Shor’s algorithm. These include Hallgren’s 2002
quantum algorithm for Pell’s equation![37] (one of the oldest problems in number theory),
which breaks the Buchman-Williams cryptosystem. The framework for quantum algorithms has
also been extended beyond the hidden subgroup problems. van Dam, Hallgren, and Ip’s 2000
quantum algorithm for shifted multiplicative characters![38,39] breaks homomorphic
cryptosystems, and the same techniques were recently extended by van Dam and Seroussi
(2002) to a quantum algorithm for estimating Gauss sums![40]. The framework of adiabatic
quantum algorithms introduced by Farhi, Goldman, Goldstone, and Sipser 2000![41], and
explored by van Dam, Mosca, and Vazirani 2001![42] provides a novel paradigm for
systematically designing quantum algorithms.
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